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1  | INTRODUC TION

The heat tolerance of plants can be defined as the maintenance 
of essential plant functions that contribute to the fitness of a 
genotype (Hall, 1992; Porch & Hall, 2013) and is commonly quan-
tified as a temperature that causes cell death (i.e. necrosis) or 
injury to photosystem II (PSII). Several studies have documented 
positive correlations between species' heat tolerances and re-
gional climates (Feeley et al., 2020; Knight & Ackerly, 2002; 
O'Sullivan et al., 2017; Smillie & Nott, 1979; Zhu et al., 2018), 

which has reinforced the assumption that higher heat toler-
ances promote greater relative fitness in hotter environments 
(Araújo et al., 2013; Osmond et al., 1987; Zhu et al., 2018). 
Consequently, heat tolerances have been assumed to constrain 
leaf morphology (Beerling, Osborne, & Chaloner, 2001; Lee, 
Upchurch, Murchie, & Lomax, 2015; Wright et al., 2017), used to 
screen for heat-resistant crops (Hall, 1992; Weng & Lai, 2005; 
Yamada, Hidaka, & Fukamachi, 1996) and are of increasing in-
terest for understanding and predicting species' responses to 
climate change.
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Abstract
1. Photosynthetic heat tolerances (PHTs) have several potential applications includ-

ing predicting which species will be most vulnerable to climate change. Given that 
plants exhibit unique thermoregulatory traits that influence leaf temperatures and 
decouple them from ambient air temperatures, we hypothesized that PHTs should 
be correlated with extreme leaf temperatures as opposed to air temperatures.

2. We measured leaf thermoregulatory traits, maximum leaf temperatures (TMO) and 
two metrics of PHT (Tcrit and T50) quantified using the quantum yield of photo-
system II for 19 plant species growing in Fairchild Tropical Botanic Garden (Coral 
Gables, FL, USA). Thermoregulatory traits measured at the Garden and micro-
environmental variables were used to parameterize a leaf energy balance model 
that estimated maximum in situ leaf temperatures (TMIS) across the geographic 
distributions of 13 species.

3. TMO and TMIS were positively correlated with T50 but were not correlated with Tcrit. 
The breadth of species' thermal safety margins (the difference between T50 and 
TMO) was negatively correlated with T50.

4. Our results provide observational and theoretical support based on a first princi-
ples approach for the hypothesis that PHTs may be adaptations to extreme leaf 
temperature, but refute the assumption that species with higher PHTs are less sus-
ceptible to thermal damage. Our study also introduces a novel method for studying 
plant ecophysiology by incorporating biophysical and species distribution models, 
and highlights how the use of air temperature versus leaf temperature can lead to 
conflicting conclusions about species vulnerability to thermal damage.
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However, the use of heat tolerances to understand plant ecology 
is complicated by the fact that tolerances can vary markedly among 
co-occurring species. For example, recent studies have shown that the 
interspecific variation of heat tolerances within communities often 
exceeds variation in community-mean heat tolerances across coarse 
climatic gradients (Feeley et al., 2020; O'Sullivan et al., 2017). In other 
words, some arctic plants have higher heat tolerances than some trop-
ical plants (O'Sullivan et al., 2017). Clearly, a greater understanding of 
how variation in heat tolerances correspond to environmental varia-
tion is needed before they can be used to predict plant responses to 
climate change.

Common garden experiments can control for environmental vari-
ables that may obfuscate sources of variation in heat tolerances. A 
recent common garden experiment used cooling and warming treat-
ments to show that plant communities from warmer climates gen-
erally exhibit higher mean heat tolerances than communities from 
colder climates, but that climate did not explain variation in heat 
tolerances among individual species (Zhu et al., 2018). In a separate 
study, the variation in the heat tolerances of 42 species grown in a 
botanical garden were attributed to physiological adaptions to mi-
crohabitat, and not climate (Curtis, Knight, & Leigh, 2019). Similarly, 
Knight and Ackerly (2002) speculated that differences between heat 
tolerances of congeneric species measured in situ, and those mea-
sured in a common environment were attributable to changes in leaf 
temperature. These latter studies highlight the potential importance 
of leaf physiology and leaf temperatures for understanding variation 
in heat tolerances.

Leaf temperatures are determined by the physical proper-
ties of leaves and their interactions with the environment. Since 
plant species possess unique combinations of thermoregulatory 
traits including leaf size (Leigh, Sevanto, Close, & Nicotra, 2017; 
Smith, 1978), stomatal conductance (Lambers, Chapin, & Pons, 
2008) and thermal absorptivity (Meinzer & Goldstein, 1985; Smith 
& Nobel, 1977), different species should experience different leaf 
temperatures even in identical environmental conditions. It follows 
that heat tolerances should therefore correlate more with extreme 
leaf temperatures than with regional climates—especially since leaf 
and air temperatures can be decoupled (Michaletz et al., 2016). 
Importantly, this hypothesis could help explain the variation in 
heat tolerances of plants in common garden experiments and 
among communities.

Heat tolerance is commonly determined by measuring the re-
sponses of cell death, membrane leakage or fluorescence to heat treat-
ments (Hall, 1992; Porch & Hall, 2013). Heat tolerance determined 
using fluorometry is referred to as photosynthetic heat tolerance (PHT) 
because it provides insight into the effect of high temperatures on the 
function of PSII, but does not directly measure carbon assimilation 
(Baker, 2008). Two fluorometric variables widely used to assess the 
function of PSII in response to heat are the initial fluorescence (F0) and 
the maximum quantum yield (FV/FM). Changes in F0 signal changes in 
the number of open reaction centres of PSII, but are subject to error 
when measured during stress treatments (e.g. heating) that alter the 
optical properties of leaves (Baker, 2008). Alternatively, FV/FM provides 

a relative index of PSII function (where FV = FM − F0; FM = closed reac-
tion centres) that is not biased by confounding effects of changing leaf 
optical properties during stress treatments (Baker, 2008).

Regardless of the method used to monitor function of PSII, 
there are two widely reported metrics of PHT. One metric of PHT 
is termed the critical temperature (Tcrit) and represents the tem-
perature that causes initial damage in a given response variable 
(e.g. Offord, 2011; Schreiber & Berry, 1977; Slot, Krause, Krause, 
Hernández, & Winter, 2018). The second metric of PHT is generally 
termed T50 and is calculated as the temperature that causes 50% 
damage in the chosen response variable (e.g. Knight & Ackerly, 2002; 
Krause et al., 2010).

Although Tcrit and T50 indicate different levels of damage to the 
function of PSII, both can be useful for predicting vulnerability to 
heat damage. This vulnerability is termed the thermal safety mar-
gin and is generally quantified as the difference between maximum 
air temperatures and the species' heat tolerance (Curtis, Gollan, 
Murray, & Leigh, 2016; O'Sullivan et al., 2017). Small thermal safety 
margins signify a high susceptibility to heat damage. Given that leaf 
temperatures are often decoupled from air temperatures (Michaletz 
et al., 2016), thermal safety margins calculated using maximum leaf 
temperatures, rather than air temperatures, should provide better 
predictions of leaf vulnerability to heat damage.

In this study, we move beyond the use of coarse-scale climatic 
data for understanding variation in PHTs by testing if Tcrit, and T50 
are correlated with extreme leaf temperatures. We first investi-
gate the relationship between both PHTs and maximum observed 
leaf surface temperatures in 19 plant species growing together at 
the Fairchild Tropical Botanic Garden (Coral Gables, Florida, USA). 
Since maximum leaf temperatures observed within a single location 
may not represent the thermal extremes experienced by species 
across their full ranges, we next use a novel modelling procedure 
to estimate the maximum leaf temperatures throughout the known 
distributions of 13 species and compared these estimates to PHTs 
measured at Fairchild Garden. These maximum in situ leaf tempera-
ture were estimated using a leaf energy balance model parameter-
ized with thermoregulatory traits collected at Fairchild Garden and 
microhabitat data at the species' known occurrence locations. We 
then test the assumption that species with higher heat tolerances 
are less vulnerable to heat damage by calculating the thermal safety 
margin for each species using extreme leaf temperatures and PHTs 
measured in the garden.

2  | MATERIAL S AND METHODS

2.1 | Study site and species selection

This study was conducted using the living plant collections of the 
Fairchild Tropical Botanic Garden in Coral Gables, Florida, USA 
(25.677 N, −80.275 W). Fairchild Garden has a subtropical mon-
soonal climate with a mean annual temperature of 24.1°C and an av-
erage annual rainfall of roughly 130 cm (Figure S1). Fairchild Garden 
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curates over 12,000 individual plants representing >2,500 species 
of >175 families from tropical and subtropical biomes all over the 
world (Perez et al., 2019). We selected 19 woody plant species from 
18 different families that naturally occur in tropical rainforest or sea-
sonal forest habitats (Figure S1; Table 1). The study species were 
chosen based on the availability of individuals with accessible cano-
pies to facilitate measurements of leaf temperatures and leaf traits. 
For each study species, we selected one focal plant that received 
direct sunlight for measuring maximum leaf temperatures.

2.2 | Heat tolerances

For this study, PHTs were estimated using the Fv/Fm method as pre-
scribed by Krause et al. (2010). Fresh sun-exposed leaves of the 
study plants were collected in the mornings before 10:00 a.m. on 
5 and 6 September 2017 and brought immediately to onsite labo-
ratory facilities for processing. Leaf discs (~1.9-cm diameter) were 
cut from several of the leaves (roughly 10–70 leaves per species). 
A minimum of six leaf discs were selected for heat treatment, but 
up to 12 discs were used per species per heat treatment if leaf ma-
terial was sufficient (a total of 66–122 leaf discs per species). Leaf 
discs were shuffled, placed abaxial side-down on three layers of 
Miracloth fabric and covered with an additional layer of fabric to 
prevent anaerobiosis (Krause et al., 2010), before being inserted 
into waterproof plastic bags. Air was removed from the bags and 
bags were submerged in one of 11 water baths maintained at room 

temperature (~23), 38, 40, 42, 44, 46, 48, 50, 52, 54 or 60°C. During 
heat treatments, leaves were kept under dim light that was unlikely 
to induce violaxanthin and zeaxanthin production and could have 
led to underestimates of heat tolerances (see Section 4; Krause, 
Winter, Krause, & Virgo, 2015). After 15 min of heat treatment, leaf 
discs were removed from the water baths and bags, and were then 
placed in petri dishes lined with moist paper towels where they were 
left under dim light (~1 μmol photons m−2 s−1) at room temperature 
(~23°C) to recover for ~24 hr. After this recovery period, the leaf 
discs were dark-adapted for 20 min and Fv/Fm was measured using 
an OS30p+ handheld fluorometer (Opti-Science).

To estimate Tcrit and T50, we modelled the relationship between 
Fv/Fm and treatment temperature for each species using logistic 
nonlinear least squares models with the ‘nls’ function in the r stats 
package (R Core Team, 2018; see Feeley et al., 2020 for full model). 
We defined Tcrit as the temperature at which Fv/Fm begins to decline, 
and calculated this value by finding the temperature where the slope 
of the Fv/Fm versus temperature relationship reached 15% of its 
most negative value. The second metric, T50, was calculated as the 
temperature that caused a 50% reduction in Fv/Fm compared to the 
control treatment. We generated bootstrapped means and 95% con-
fidence level estimates of Tcrit and T50 by reiterating the ‘nls’ model 
100 times for each species while randomly resampling data with re-
placement before each iteration.

2.3 | Observed (TMO)

To measure the maximum observed leaf temperature (TMO) of each 
species, we monitored five to eight mature sun-exposed leaves per 
individual on sunny days from 7 August through 2 September 2017, 
which is the hottest portion of the year in Miami (https://www.
weath er.gov/mfl/clima te#NormM). Over the course of the sam-
pling period we visited a random subset of the focal plants each 
day. During visits, we took point temperature measurements on 
the monitored leaves with a MT6 MiniTemp infrared thermometer 
(Raytek) for a total of 45–104 measurements per individual plant. 
The upper 97.5th quantile of temperature for each leaf was cal-
culated, and the average of these values was used as the species' 
mean TMO.

2.4 | Estimated maximum leaf temperature (TMIS) 
across species ranges

The maximum leaf temperatures measured on an individual plant at 
any single site will not fully represent of the range of leaf tempera-
tures experienced by a species throughout its geographic distribu-
tion. To estimate the maximum leaf temperatures across each of our 
species' distributions, we parameterized a leaf energy balance model 
with leaf thermoregulatory traits measured on plants in the Fairchild 
Garden. We used a well-established leaf energy balance model that 
assumes the thermal radiation absorbed by a leaf is balanced by 

TA B L E  1   Study species, authorities and their respective families

Species Family

Adenocalymma comosum (Cham.) DC.a  Bignoniaceae

Bauhinia divaricata L. Fabaceae

Brunfelsia lactea Krug & Urb.a  Solanaceae

Cocculus laurifolius DC.a  Menispermaceae

Combretum rotundifolium Rich.a  Combretaceae

Cordia goeldiana Hubera  Boraginaceae

Cryptostegia grandiflora Roxb. ex R.Br.a  Apocynaceae

Eugenia coronata Vahl ex DC. Myrtaceae

Forestiera segregata (Jacq.) Krug & Urb.a  Oleaceae

Galphimia gracilis Bartl.a  Malpighiaceae

Gardenia taitensis DC. Rubiaceae

Ginoria glabra Griseb. Lythraceae

Hamelia patens Jacq.a  Rubiaceae

Hibiscus rosa-sinensis L. Malvaceae

Holmskioldia sanguinea Retz.a  Lamiaceae

Justicia brandegeeana Wassh. & L.B.Sm.a  Acanthaceae

Maytenus procumbens (L. f.) Loes.a  Celastraceae

Moringa stenopetala (Baker f.) Cufod. Moringaceae

Phaleria macrocarpa (Scheff.) Boerl.a  Thymelaeaceae

aSpecies used to estimate TMIS. 

https://www.weather.gov/mfl/climate#NormM
https://www.weather.gov/mfl/climate#NormM
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latent heat loss, sensible heat loss, emitted thermal radiation, and 
that metabolic heat production and storage are negligible. According 
to this model, leaf temperature (Tl) is:

where Ta is ambient air temperature, γ* is the psychrometric constant 
determined from the ratio of combined boundary layer and radiative 
conductances to stomatal conductance, s is the slope of the saturation 
pressure curve, Rni is the isothermal net radiation incident upon a leaf, 
gHR is the combined boundary layer and radiative conductances, cp is 
the heat capacity of dry air, D is the vapour pressure deficit and ρ is 
atmospheric pressure (Campbell & Norman, 1998).

The thermoregulatory leaf traits we used to parameterize the 
leaf energy balance model were effective leaf width (we), leaf ab-
sorptance to shortwave radiation (a) and stomatal conductance (gs). 
Effective leaf width and leaf absorptance were measured on the 
focal species at the Garden in September 2017 at the end of the 
study period.

Effective leaf width (we) is the diameter of the largest circle ca-
pable of fitting within a leaf margin (e.g. see Leigh et al., 2017) and is 
used as the characteristic dimension (d) when determining boundary 
layer conductance (

√

u∕d where u is the wind speed, ms−1) follow-
ing the convention of Campbell and Norman (1998). When other 
leaf thermoregulatory traits are held constant, larger we reduces 
leaf boundary layer conductance resulting in higher temperatures 
(Campbell & Norman, 1998; Jones, 2014; Leigh et al., 2017). We 
scanned five to eight of the monitored leaves of each study species 
in a flatbed scanner and then used ImageJ (Rueden, Schindelin, & 
Hiner, 2017) to measure we.

Higher values of leaf absorptance (a) indicate that a larger 
proportion of radiant thermal energy is being absorbed by a leaf, 
causing hotter leaf temperatures. Leaf absorptance (a) is calculated 
as: a = 1 − leaf reflectance − leaf transmittance. Leaf reflectance 
and transmittance were measured with a CI-710 Miniature Leaf 
Spectrometer (Bio-Science) over 400–1,000 nm wavebands follow-
ing Smith and Nobel (1977) on five fully expanded mature leaves 
chosen at random for each species.

Stomatal conductance (gs) influences leaf temperatures through 
evaporative heat loss (Lambers et al., 2008), and the sum of gs in 
series with the boundary layer conductance is used to determine 
the boundary layer conductance of water vapour (gWV). The term 
γ* can then be calculated by multiplying the psychrometric constant 
(6.66 × 10–4 C−1) by the ratio the radiative conductance (gHr) to gWV, 
where gHr is the sum of boundary and radiative conductance (see 
Campbell & Norman, 1998). Stomatal conductance was measured 
with a SC-1 leaf porometer (Meter Devices) on the monitored leaves 
of each species immediately after temperature measurements. 
Stomatal conductance was measured in middle of the leaf blades 
of at least five leaves per visit to an individual plant (40–70 total 
measurements per individual). To calculate TMIS we parameterized 
our leaf energy balance model with constant but realistic values of 

gs equal to the gs observed at the maximum observed temperature 
(TMO) of each leaf.

Before calculating maximum leaf temperatures (TMIS) across the 
species' distributions, we validated the leaf energy balance model 
by using the leaf temperature measurements and environmental 
data collected at Fairchild Garden. The environmental data we used 
to parameterize the leaf energy balance model included surface  
albedo, solar irradiance, air temperature, relative humidity and wind 
speed. We used a constant surface albedo of 0.26 due to the mixed 
grass cover at Fairchild Garden (Campbell & Norman, 1998). We 
measured environmental data and stomatal conductance simulta-
neously with leaf temperatures. We measured solar irradiance inci-
dental to the leaf blades and over wavebands 400–1,100 nm using 
a Model 10.0 Digital Pyrometer (Solarmeter). Ambient air tempera-
ture, wind speed and relative humidity were measured with a Kestrel 
3000 (Kestrel Instruments). Due to the inability of our equipment 
to measure very low wind speeds, wind speeds were assumed to be 
0.1 ms−1 when not registered by our anemometer. Even at low wind 
speeds of 0.1 ms−1, leaves are likely to experience forced convec-
tion—one assumption of our energy balance model (Nobel, 1999). 
We compared the predicted leaf temperatures for Fairchild Garden 
and each species' TMO using ordinary least squares regression. We 
also performed a sensitivity analysis to identify the variables that 
have the greatest effects on modelled leaf temperatures with r's pse 
package, which uses a Latin hyper cube sampling technique to ran-
domly sample the multivariate space encompassing the leaf trait and 
environmental data used to parameterize our leaf energy balance 
model (Chalom & Prado, 2017). We performed 100,000 sampling  
iterations based on random uniform distributions of each parameter 
constrained to our observed trait ranges. We report the partial rank 
correlation coefficients showing the linear effect of each indepen-
dent parameter on the modelled leaf temperatures.

To model TMIS across species' distributions, we downloaded all 
available geo-referenced coordinates for each study species from the 
Global Biodiversity Information Facility (GBIF; http://www.gbif.org/, 
accessed 3/24/19). Records were filtered to exclude obvious geo- 
referencing errors (e.g. coordinates in oceans) and duplicate entries. 
At each of the remaining collection locations, we extracted estimates 
of the mean annual temperature (BIO1), maximum temperature of the 
warmest month (BIO5), minimum temperature of the coldest month 
(BIO6) and mean annual precipitation (BIO12) from the WorldClim 
database (2.5 arc-min resolution; Fick & Hijmans, 2017). To minimize 
the influence of outliers (caused, for example, by geo-referencing or 
taxonomic errors), we removed any records that fell outside the 95% 
quantile of a given climatic variable for each species. Only species 
with ≥15 records in the cleaned occurrence dataset were used in 
subsequent analyses.

We next used the energy balance model to estimate the maxi-
mum leaf temperatures for each species at all of the remaining oc-
currence locations. To make these estimates, we assumed a constant 
surface albedo of 0.15 for forest cover (Loescher, Gholz, Jacobs, & 
Oberbauer, 2005), a low wind speed of 0.1 ms−1, and assumed that 
all leaves were oriented horizontally. We justify the assumption of 

(1)Tl=Ta+
�
∗

s+�∗

[

Rni

gHRcp
−

D

��∗

]

,

http://www.gbif.org/
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horizontal leaf orientations for modelling purposes in the Discussion 
section and in our Supplemental Information (Figure S2). The oc-
currence locations were passed to r's NichMapr package (v1.1.4; 
Kearney & Porter, 2017) to determine ambient air temperature, 
relative humidity and solar irradiance during the hottest time of 
the year. Each species' TMIS was then calculated as the mean of the 
upper 97.5th quantile of the maximum leaf temperatures estimated 
at the occurrence locations using the leaf energy balance model pa-
rameterized with the thermoregulatory traits measured on plants 
at Fairchild Garden. Our modelling procedure assumes that only 
environmental variables, and not thermoregulatory traits or PHTs, 
change throughout the species' distributions. As a point of compari-
son with traditional methods, we calculated the average of the mean 
maximum monthly temperature (BIO5; 2.5 arc-min resolution) for 
each location occurrence in our cleaned dataset and tested for any 
relationship with Tcrit and T50.

We did not measure any aspect of plant fitness, but we explored 
the possibility that heat tolerances could be adapted to leaf tem-
peratures by testing for correlations between measures of maximum 
leaf temperatures (TMO, TMIS), and metrics of PHT (T50 and Tcrit) using 
Pearson's correlation coefficient. To better understand which spe-
cies may be more vulnerable to heat damage, we calculated species' 
thermal safety margins as the difference between T50  and TMO, then 
tested the a priori hypothesis that species with higher heat toler-
ances are more likely to be protected from thermal damage using 

ordinary least squares regression. All analyses were conducted using 
R version 3.5.1 (R Core Team, 2018).

3  | RESULTS

3.1 | Heat tolerances

The mean Tcrit for all 19 study species was 42.8°C and ranged from 
37 to 48°C. The mean T50 for all species was 49.6°C and ranged from 
47 to 52°C (Figure 1). Overall, Tcrit was more variable across species 
(SD = 2.6) than T50 (SD = 1.1). Tcrit and T50 were positively corre-
lated but their relationship was not significant (Pearson's r = 0.403, 
p = 0.087, df = 17).

3.2 | TMO, leaf energy balance model 
parameterization and TMIS

Mean maximum observed leaf temperatures (TMO) ranged from 
33 to 45°C, and differences between species' mean maximum leaf 
temperatures and concurrent air temperatures ranged from 0.8 to 
11.5°C. Leaf temperatures never exceeded T50, but TMO exceeded 
Tcrit for three species. TMO was not correlated with Tcrit (Pearson's 
r = 0.364, df = 17, p = 0.125; Figure 2a), but was positively 

F I G U R E  1   The temperature–FV/FM relationship used to determine photosynthetic heat tolerances for 19 study species. Grey dots 
represent individual leaf discs, blue lines indicate one of 100 bootstrapped temperature–FV/FM nls models. The vertical light and dark green 
lines show Tcrit and T50, respectively
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correlated with T50 (Pearson's r = 0.763, df = 17, p < 0.001; 
Figure 2a).

The leaf temperatures of Fairchild Garden plants that we pre-
dicted with the leaf energy balance model ranged from 19 to 51°C. 
The energy balance model predicted substantially more variation 
(Figure 3a; p < 0.001, r2 = 0.558, df = 742) in leaf temperature than 
did ambient air temperature (r2 = 0.28) or solar irradiance alone 
(r2 = 0.34). Our leaf energy balance model tended to underestimate 
leaf temperatures (low leaf temperatures were particularly suscep-
tible to underestimation). The leaf energy balance model was suc-
cessful in predicting species' TMO at Fairchild Garden (Figure 3b; 
p = 0.003, r2 = 0.763, df = 17), but tended to underestimate high 
maximum leaf temperatures, overestimate low maximum leaf tem-
peratures and resulted in up to a 3.33°C difference between in 
maximum predicted and maximum observed leaf temperatures.

Our sensitivity analysis indicated that solar irradiance, air tem-
perature and relative humidity had the largest positive effects on 
estimated leaf temperatures (Figure 4). Wind speed had a positive 
negligible effect on leaf temperature, while leaf width had a negative 
(cooling) negligible effect on leaf temperature (Figure 4). Stomatal 
conductance was the leaf trait with the largest effect on leaf tem-
perature, followed by leaf absorptivity; the former had a negative 
effect, while the latter had a positive effect (Figure 4).

Our final dataset included the estimates of TMIS across the 
known geographic ranges of 13 species (Table 1). Estimates of TMIS 
for these species ranged from 35 to 46°C. TMIS was not significantly 
correlated with Tcrit (Pearson's r = 0.25, p = 0.42, df = 11; Figure 2b) 
and TMIS exceeded Tcrit in four species. TMIS was significantly pos-
itively correlated with T50 (Pearson's r = 0.74, p < 0.01; df = 11; 
Figure 2b) and TMIS did not exceed T50 in any species. We found 

F I G U R E  2   The relationship between Tcrit, T50 and (a) maximum 
observed leaf temperature (TMO), and (b) maximum in situ leaf 
temperature (TMIS). Open symbols represent individual leaf TMO or 
TMIS and closed symbols correspond to species mean TMO or TMIS. 
Horizontally arranged points indicate there is one estimate for 
photosynthetic heat tolerance, but 5–8 different TMO per monitored 
leaf per species. Solid lines indicate significant correlations; long-
dashed lines indicate insignificant correlation; short-dashed grey 
lines indicate the 1:1 relationship between variables. Coefficients 
for all linear models are provided in the Table S1

F I G U R E  3   (a) Model validation for the relationship between 
observed leaf temperature (TL) and predicted leaf temperature; 
and (b) the relationship between maximum observed (TMO) and 
predicted TMO. Only point measurements where solar irradiance 
was >100 Wm−2 were used. The dashed line indicates a 1:1 
relationship between variables, the solid line shows the modelled 
relationships, and shaded regions show the 95% confidence interval 
of the model. Note that this figure shows the model validation and 
not TMIS
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no significant relationship between the average mean maximum 
monthly temperature (BIO5) where species occur and the species' 
heat tolerances (Figure S3).

Lastly, the thermal safety margins of our study species ranged 
from 6 to 14°C. The results of our linear model indicated a negative 
correlation between PHTs and thermal safety margins (r2 = 0.256, 
p = 0.0156, df = 17; Figure 5).

4  | DISCUSSION

We found two separate lines of evidence to support our hypoth-
esis that extreme leaf temperatures drive interspecific variation of 
photosynthetic heat tolerances (PHTs). First, we found a significant 
correlation of observed maximum leaf temperatures (TMO) with T50, 
but not with Tcrit, in our common garden environment. Second, es-
timates of maximum in situ leaf temperatures (TMIS) across species' 
geographic distributions were also correlated with T50, but not with 
Tcrit. We also tested the hypothesis that species with higher heat 
tolerances are less susceptible to thermal damage than are species 
with lower tolerances. Contrary to expectation, we found a signifi-
cant negative relationship between T50 and thermal safety margins, 
which suggests that species with higher heat tolerances may actually 
be more susceptible to heat damage. Tcrit was not significantly cor-
related with species' TMO, TMIS or thermal safety margins, and thus 
its ecophysiological importance and potential link to plant fitness 
remains unclear.

Many methods are used to determine photosynthetic heat tol-
erances, which make direct comparisons among studies difficult. 
Our estimates of Tcrit and T50 were generally comparable to those re-
ported in other studies using similar methods (Curtis, Knight, Petrou, 
& Leigh, 2014; Krause et al., 2010; Slot et al., 2018). Our estimates of 
Tcrit tended to be lower and exhibit less variability than reported for 
other tropical species with Tcrit estimated from changes initial fluo-
rescence (F0; O'Sullivan et al., 2017). However, the greater variation 
in our Tcrit values relative to T50 may explain why T50, but not Tcrit, was 
correlated with extreme leaf temperature. For example, less varia-
tion in T50 is consistent with the hypothesis that larger reductions in 
the quantum yield (FV/FM) have larger negative effects plant carbon 
economics than small reductions represented by Tcrit. This possibly 
reduces biophysical selection for Tcrit, explains the greater variability 
in Tcrit and explains why it is not coordinated with leaf temperature 
regardless of assessment method (e.g. F0 in Knight & Ackerly, 2002).

We found that the leaf temperature estimates for plants at 
Fairchild Garden based on the energy balance model did a good job of 
predicting the observed leaf temperatures. However, our modelled 
leaf temperatures were not as precise or accurate as those in some 
previous studies (e.g. Fauset et al., 2018; Lee et al., 2015; Meinzer & 
Goldstein, 1985), possibly because we validated our model outdoors 
and for several species while other studies have validated their 
models for fewer species and under controlled laboratory settings. 
Additional model inaccuracy may be attributable to the low sensitiv-
ity of our anemometer and our assumption of a minimum wind speed 
of 0.1 ms−1. At very low wind speeds (<0.1 ms−1), free convection 
may dominate over forced convection, thus violating an assumption 
of our model and explaining our model's under-prediction of lower 

F I G U R E  4   Results of the sensitivity analysis performed on the 
leaf energy balance model show the relative positive or negative 
effect that the corresponding variables have on predicting leaf 
temperature. Brown colours indicate environmental variables while 
green colours indicate leaf traits

F I G U R E  5   The relationship between thermal safety margin and 
T50 heat tolerance
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leaf temperatures. Our model's accuracy was greatly improved when 
it was used to predict species' TMO. That said, our predicted TMO 
differed from observed TMO by up to 3.33°C, which may have non- 
negligible consequences for some leaf physiological processes in-
cluding when modelling TMIS.

The positive correlation between T50 and the maximum leaf 
temperatures modelled across species' geographic ranges (TMIS) 
provides additional support for the hypothesis that extreme leaf 
temperatures are an important driver of interspecific variation in 
PHTs. A comparison of our predicted and observed TMO at Fairchild 
Garden suggests that high leaf temperatures are more likely to be 
underestimated and low leaf temperatures are more likely to be 
overestimated. However, given the observed deviations in pre-
dicted maximum leaf temperatures of TMO, we are confident the 
observed relationship between TMIS and T50 is robust and is not the 
consequence of Type I error.

Our results did not support the hypothesis that species with 
higher heat tolerances have larger thermal safety margins and thus 
are less susceptible to heat damage (O'Sullivan et al., 2017; Sastry 
& Barua, 2017). Conversely, our results suggest that species with 
higher T50 are actually more vulnerable to heat damage because 
they have hotter leaves and smaller corresponding thermal safety 
margins. We expect this pattern to hold across species' distributions 
since very large errors in our estimates of TMIS would be needed re-
verse the slope of the relationship between TMIS and T50. Such large 
errors are extremely unlikely given the coordination between our 
predicted and observed TMO values. These results highlight how the 
use of air temperatures versus leaf temperatures can lead to con-
flicting conclusions about which species are most vulnerable to ther-
mal damage.

A potential source of error in our results is that we did not 
illuminate our leaf tissues during heat treatments. Leaf tissue ex-
posed to light activates the production of violaxanthin and zea-
xanthin photoprotective pigments, which have been shown to 
increase the estimates of T50 by up to 1°C (Krause, Winter, Krause, 
& Virgo, 2016). To test if potentially underestimated heat toler-
ance could have influenced our results, we randomly introduced 
error of up to +1°C in T50; this did not have any significant effect 
on the observed relationships between T50 and TMO or TMIS or their 
significance.

The results of our garden and modelling experiments support our 
hypothesis that extreme leaf temperatures drive variation in T50, and 
suggest that species with high heat tolerances are more vulnerable to 
rising temperatures due to climate change. However, we made three 
important assumptions in our procedure for calculating TMIS that war-
rant discussion.

Our first assumption was that all leaves were horizontal. In real-
ity, plant canopies exhibit a large distribution of leaf angles. While 
steeper angles will greatly reduce sun exposure and hence leaf 
temperatures, theoretical and observed probability distributions 
of leaf angles show that a non-negligible proportion of leaves are 
horizontal or have angles ≤15° (corresponding to <1°C of cooling 
compared to horizontal). Given that we were interested in maximum 

leaf temperatures, our results are unlikely to be invalidated by our 
assumption of horizontal leaves (Figure S2).

The second assumption we made was that leaf thermoregulatory 
traits did not vary across species' geographic distributions. Since 
we did not incorporate intraspecific trait variation in our models, 
variation in TMIS was driven entirely by changes in environmental 
conditions, and there is no reason to expect that variation in envi-
ronmental conditions would produce patterns in TMIS that should ex-
hibit any relationship with T50. The effects of geographic variation in 
thermoregulatory leaf traits on leaf temperature should be negligible 
given their concomitant changes with environmental conditions or 
with other traits. For example, the leaf widths of Dodonaea viscosa 
were observed to decrease by 0.6 mm per degree latitude (Guerin, 
Wen, & Lowe, 2012), but decreases in leaf widths of this magnitude 
would cause minor decreases in leaf temperature and could be coun-
teracted by increases in air temperatures associated with lower lat-
itudes. Similarly, intraspecific changes leaf size that increased along 
precipitation gradients were accompanied by increases in stomatal 
conductance (McLean et al., 2014), which indicates that changes 
among thermoregulatory traits may be coordinated and have a lim-
ited effect on our observed relationship between TMIS and T50.

Our third assumption was that PHTs did not vary across species' 
distributions. Variation in PHTs across a species' distribution could be 
caused by acclimation, plasticity or local adaptation. Our justification 
for not incorporating variation in PHTs across the species' distributions 
is supported by the theory that tropical species generally have limited 
capacities to acclimate their photosynthetic traits (Cunningham & 
Read, 2003). Consistent with this hypothesis, previous studies found 
that experimental warming of tropical tree seedlings had no effect 
on their PHTs (Krause et al., 2010). Indeed, many tropical species are 
already operating above their temperature optima and maxima for 
carbon assimilation (Doughty & Goulden, 2009; Mau, Reed, Wood, & 
Cavaleri, 2018), which is partially influenced by PSII function and pro-
vides additional indirect evidence of their limited capacity to acclimate 
to higher temperatures. Nevertheless, we did measure PHTs during the 
hottest part of the year which should have minimized any potential 
effect of cool-to-warm season acclimation on our heat tolerances.

Although not supported by common garden data, it is possible 
that local adaptation could cause PHTs to vary independently of 
leaf temperatures, causing Type I error and leading us to incorrectly 
conclude there is a relationship between TMIS and T50. Even if PHTs 
vary across species' distributions, this variation should be relatively 
small as PHTs are known to increase by just 0.16–0.25°C per degree 
in air or leaf temperature (Drake et al., 2018; Feeley et al., 2020; Zhu 
et al., 2018). Despite its limitations, we contend that our method 
for estimating TMIS is a promising approach for studying the thermal 
ecology and geographic distributions of plants.

Coarse climatic variables may explain some of the variation in 
heat tolerances among different communities, but our study impli-
cates extreme leaf temperature as an important ecophysiological 
driver of interspecific variation in T50. This hypothesis is supported 
by field observations as well as theoretical predictions from bio-
physical models. The techniques we employed here have potentially 
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widespread applications for making physiologically informed pre-
dictions of species' distributions and their responses to climate 
change. Notably, our findings indicate that species with higher 
heat photosynthetic tolerances may actually be at greater risk of 
thermal damage since they often have hotter leaf temperatures 
and narrower thermal safety margins. Our study also highlights the 
need for more information on intraspecific variation in leaf ther-
moregulatory traits and PHTs across species' distributions to help 
improve accuracy in future models. We did not test the adaptive 
significance of PHTs, but our results provide an ecophysiological 
mechanism for testing if heat tolerances are an adaptation to ex-
treme leaf temperatures and influence fitness. Photosynthetic heat 
tolerances are presumed to be adaptations that contribute to plant 
productivity, but this has not been rigorously tested and should be 
a priority for future research (Hall, 1992; Porch & Hall, 2013).
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