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Abstract

Leaf Area Index is one of the functional traits most studied in ecology, as it is fundamental to understanding
whole plant functioning, in particular related to physiological processes, namely evaporation, transpiration,
CO2 exchange, and physical activities, such as radiation and water interception. This is particularly relevant in
tropical forests, which are increasingly impacted by deforestation, degradation and fragmentation, and
consequently affect LAI values and overall primary productivity. This study aims at quantifying LAI spatial
variability across three forest types and assessing the relationship with two structural parameters, diameter at
breast height and tree density. LAI values are quantified by taking pictures of the canopy through a digital
camera with 35 mm focal lens and 44° field of view and processing them through the ‘coveR’ package in
RStudio. The results show a significant difference in LAI values between forest types. In particular, the
primary forest presents higher LAI values, indicating higher photosynthetic activity, compared to the other two
forest types. However, no significant difference has been found between forest structural parameters (DBH
and TD) and LAI This is likely due to study limitations, namely time constraint. Further studies should
consider long-term monitoring of LAI, especially considering future structural changes in the secondary and
native food forests and variations between dry and wet seasons. The ability to map and characterise variation in
LAI across forest types is critical for understanding how their primary productivity will respond to an

increasing degree of anthropogenic disturbance.

Introduction advantaged in high-resource environments,
Leaf economics spectrum and Leaf Area as they implement the ‘productive strategy’
Index for rapid light, nutrient and water uptake,
but build quickly disposable tissues and are
less tolerant to low resource availability
(Sterck et al., 2006). Plants on the other
hand of the spectrum will use the
‘conservative strategy’ (Paramanik et al.,
2022; Sterck et al.,, 2006), through low
respiration rates, low nutrient
concentrations, slow water uptake, denser
tissues, but longer leaf life-span. This
conceptualisation of functional traits has
offered generalisability to predict ecosystem
processes (Mahowald et al., 2016), and this
is fundamental for understanding plant
interaction with external abiotic and biotic
factors.

Watson was among the first to use the
concept of Leaf Area Index (LAI), a

Plants possess functional trait values that
reflect their evolutionary history and define
both their physiological and physical
performance (Lam et al., 2022). Functional
traits are widely used in ecology as they
encompass plant life history, demographics,
short- and long-term responses (Sterck et
al., 2006), at organ, individual, community
and ecosystem scales (Ordway et al., 2022).
Assessing these functional traits can help us
understand plant trade-off mechanisms
along a ‘Leaf Economics Spectrum’ (Reich,
2014), which defines the leaf morphological
trade-off between resource acquisition and
structural resilience. Plants at one end of the
spectrum, possessing fast traits, are
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dimensionless plant functional trait highly
valued in ecology for its wide research
applications (Watson, 1958). The trait
equates to the one-sided cumulative leaf
area of a stand per unit ground area. If the
value is 0 it reflects absence of canopy,
while the highest values registered so far
are around 6 (thick dense canopy, no sky
visible) (Clark et al., 2008; Miranda et al.,
2020). Not only is it used to describe
canopy density and the frequency of gaps in
between the canopy, but most importantly
to understand whole-plant  organism
functioning (Hardwick et al., 2015). LAI
regulates a series of physiological
processes, namely evaporation,
transpiration, latent and sensible heat fluxes
(Hardwick et al.,, 2015), CO2 exchange
between terrestrial ecosystem and the
atmosphere (Deb Burman et al., 2017), as
well as physical processes, such as radiation
and water interception (Srinet et al., 2019).
Being considered an essential attribute of
global vegetation, LAI has been listed as an
essential climate change variable by the
global climate research community (GCOS,
2011). It is positively associated with plant
photosynthetic activity. In fact, it plays a
crucial role in estimating Gross Primary
Production (GPP) and is one of the primary
parameters used in land-surface
biogeochemical models and radiative
transfer models (Mahowald et al., 2016;
Sinha et al, 2020; Tang et al., 2012).
Lastly, LAI can be linked to the
evolutionary and biogeographical history of
a specific vegetation form (Lam et al.,
2022), as well as a community’s response to
abrupt changes in its surroundings
(Valladares et al., 1997).

Approaches to evaluating LAI variation at a
small scale

There are different methods for evaluating
LAIL both directly and indirectly. Direct
methods consist in harvesting leaves from
the tree canopy and measuring their area on
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one side. With this method, precision is
necessary to avoid overlapping of leaves
and causing leaf area underestimation
(Clark et al., 2008). A clear advantage of
harvesting is the direct quantitative results
obtained. On the other hand, it is expensive
and logistically intensive (Clark et al., 2008;

Fang et al, 2019), not to mention
unsustainable especially for long-term
monitoring.  Indirect methods include

remote sensing, ground-based light sensors,
digital  photography and  allometric
equations based on leaf harvest data or
forest structure variables, such as diameter
at breast height (DBH), tree height and tree
density.  Remote  sensing  involves
measurement of transmitted or reflected
light and calculations using inferential
models, and research is increasing using
this methodology (Poblete-Echeverria et al.,
2015). Light Detection And Ranging
(LiDAR), in particular, is very precise for
estimating height and vertical structure of
forests (Tang et al., 2012). However, it is
not always an economically viable option,
data are seldom public and require
validation ~ with  ground-based  data.
Allometric equations are a semi-direct
approach (Paramanik et al., 2022), however
they are specific to site, stand age, density
and climatic conditions, and can become a
tenuous methodology when applied to a site
with fundamentally different environmental
characteristics (Wirth et al., 2001).

Digital photography has been one of the
pioneering methods in forest ecology to
estimate canopy cover and LAI. Indirect
optical methods have been developed based
on measurements of direct or diffuse light
penetration through the canopy (Drever and
Lertzman, 2003). Hemispherical
photography acquires images with an
extremely wide-angle fish lens, yielding the
footprint of the canopy with a 180° Field Of
View (FOV) in one photograph (Chianucci
et al., 2022). The large area coverage is



very advantageous, and allows
determination of both leaf area and foliage
angle distribution by measuring gap fraction
at multiple zenith angles. However, it is
very sensitive to sky conditions and camera
exposure, which affects the accuracy of
canopy gap retrieval (Alivernini et al.,
2018). It is also very complex to process
these images and theoretical formulas are
necessary to infer LAI from the angular
distribution of gap fraction values
(Chianucci et al., 2022). Digital Cover
Photography (DCP) is a more recent
indirect method to quantify canopy
attributes. DCP uses a narrower FOV than
hemispherical ~ photography,  typically
around 30°, which allows for improved
image resolution close to the zenith and
better distinction of crown gap sizes.
Comparison with both indirect and direct
LAI measurements have proven that DCP
outperforms previous approaches (Poblete-
Echeverria et al, 2015), such as
hemispherical photography, and increases
precision of LAI estimates. The main
advantages include insensitivity to canopy

exposure, gamma correction, canopy
density and mean gap size, parameters
which would typically impact

hemispherical photographs (Alivernini et
al., 2018; Macfarlane et al., 2007;
Paramanik et al., 2022).

Leaf Area Index in the tropics

Tropical forests account for around one
third of terrestrial primary productivity
(Ordway et al., 2022), playing a major role
as carbon sinks and in regulating regional
and global climate (Clark et al.,, 2007).
They constitute complex ecosystems of
overlapping plant structures, competing for
light among other resources. The existence
and distribution of these plant layers has
profound implications for light absorption
and photosynthesis. In particular, plants that
constitute the overstory of tropical forests
are direct drivers of light availability within
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the forest (Dobert et al., 2018). Canopy
density strongly influences the angle of
incidence of solar radiation, and the ratio of
diffuse and direct solar radiation. Previous
studies have shown that tropical primary
forest canopies have LAI values around 5-6,
where the leaves can block up to 95% of
visible light (Drever and Lertzman, 2003),
affecting the understory microclimate, in
terms of air and soil temperature, humidity
and wind speed (Hardwick et al., 2015).
Trees in nutrient-rich environments, such as
the tropics, are often characterised by high
leaf nutrient concentrations and invest less
in structure and defence, enabling faster
growth to reach for light, and rapid leaf
turnover (Sterck et al., 2006). This strategy
supports higher photosynthetic rates and
more rapid carbon gain.

Different studies have shown that land use
change is an important anthropogenic
disturbance  affecting the  structural
composition of tropical forests (Hardwick et
al., 2015; Valladares et al., 1997), however
not much research has been done to see how
this affects LAI at community level.
Deforestation is ever-increasing in the
tropics, accommodating for new land uses,
namely agricultural and industrial, and
reducing forests to disconnected patches of
land. Forests continue decreasing in size as
their edges increase (Pfeifer et al., 2016),
likely  altering  their  physiological
performance and their contribution as
carbon sinks. The Amazon is an ecosystem
deeply affected by landscape fragmentation,
characterised by an alternating mosaic of
agricultural  concessions, gold mines,
primary, secondary, and native food forests.
Both ‘intact’ and regenerating tropical
forests are important to the global carbon
cycle and other Ecosystem Services (Clark
et al., 2021), and it is important to quantify
LAI values in such structurally distinct
landscapes as a proxy of their primary
productivity. This study aims to quantify
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the spatial variation of LAI values and to
assess its relationship with forest structure
parameters (DBH and tree density),
between primary, secondary and a native
food forest in the Peruvian Amazon. In
particular, the research questions in this
study concern i) whether LAI varies
spatially between primary, secondary and
native food forests; ii1) whether LAI is
positively related with forest structural
parameters (DBH and tree density). LAI
values are expected to decrease from PF to
SF and NFF, respectively. With increasing
DBH and TD, also LAI values are expected
to increase.

Methods

Study site

This study was conducted at the Alliance
for a Sustainable Amazon (ASA) research
station, in Finca Las Piedras, Madre de Dios
region, Peru, located in the southwestern
Amazon basin. The landscape at ASA can
be divided in a 50 ha primary forest, a 10 ha
secondary forest and ca. 8.000 m2 native
food forest. The primary forest had been
selectively logged up until 20 years ago, its
structural composition is very

Legend

# Native Food Forest (NFF)
# Primary forest

(7 Secondary forest

ALLIANCE FOR A

SUSTAINABLE

AMAZON
heterogeneous and rich in biodiversity.
Furthermore, it is situated along the Brazil
nut (Bertholletia excelsa) corridor and is
one of the most abundant areas, which is
very important for the Peruvian economy.
The secondary forest is 7 years old, as
reforestation only started in 2016 after the
area was affected by a fire. Trees in the area
vary greatly in size, some being taller than
10 m as part of a more established forest,
while others being young treelets, some
planted at the same time as this study was
carried out as part of ASA’s reforestation
project that one day will serve as a wildlife
corridor. Species include those which had
previously been logged unsustainably, such

as big-leaf  mahogany (Swietenia
macrophylla), Spanish cedar (Cedrela
odorata), and  ironwood  (Dipteryx

micrantha) (ASA Biannual Report, 2019-
2020). Lastly, the native food forest is a
small, experimental agroforestry system
that includes Amazonian native species,
namely guava (Inga edulis), cacao
(Theobroma cacao) and Brazil nut (B.
excelsa) (ASA Biannual Report, 2019-
2020). The study was carried out during the
course of two weeks between the months of
September and October 2023.

5 Scale 1:5000

Figure 1: Aerial view of Alliance for Sustainable Amazon research station. The yellow line outlines the

borders of the property. The three polygons correspond to the three study sites, which are subject to

this research. The light green polygon corresponds to the Secondary Forest (SF), the dark green

4

polygon is the Primary Forest (PF) and the brown polygon is the Native Food Forest (NFF). The points

represent the plots, created through a random point generator in QGIS.



Data collection

Within each study site, 30 circular plots
with 5 m radius were established through a
random sampling method. In each plot, only
stems of living trees with a circumference
>= 5 cm were counted (Unger et al., 2013).
The Diameter at Breast Height (1.3 m from
ground) was calculated only for trees with a
circumference >= 10 cm.

Digital Cover Photography (DCP) was the
chosen method for analysing canopy cover,
as it resulted relatively insensitive to sky
conditions which can be attributed to a
combination of high image resolution and
small effective sampling of cover images.
This yielded even sky illuminance and
facilitated pixel classification. At the centre
of each plot, a digital photograph of the
canopy was taken with a Nikon D3400, at
1.5 m height from the ground and 35 mm
focal length (44° FOV). The choice of focal
length was made so as to correspond as
closely as possible with the plot area. Some
movement from the centre of the plot was
considered necessary if vegetation were too
close to the camera lens, cluttering the view
to the canopy. Also, photographs were
taken twice a day on a sunny day, early to
mid-mornings and mid to late afternoons, at
zenith angle of around 50°, to avoid having
the sun directly overhead and affecting the
quality of the photograph. This was not
necessary in case of an overcast sky.

Image processing

The digital photographs of the canopy cover
were imported, classified and analysed with
CoveR in RStudio. The functions available
in the package allowed to classify canopy
gaps based on their pixel size, and to
calculate forest functional attributes such as
LAI, relating canopy structure to gap
fraction (Macfarlane et al., 2007). Each
pixel of a photo consists of three digital
numbers which are light intensity quantised
in the red, green and blue bands. The blue
band (450 nm—495 nm) was chosen as it
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enables the highest contrast between sky
and canopy pixels (Chianucci et al., 2022),
which made image classification much
easier. The pixels were then classified to get
a binary image of sky (1) and canopy (0).
To retrieve LAI, first the gap pixels were
further classified based on their size (large
gaps were considered those larger than
1.3% of the image following
Macfarlane et al., 2007).
Data processing
The exported values equate to ‘effective
LAT (LAle), as the algorithm corrects LAI
for woody elements, which would otherwise
result in overestimation, and clumping of
foliage, = which  would result in
underestimation, with a light extinction
coefficient k (Srinet et al., 2019). Light
extinction coefficient indicates the light
interception efficiency through the canopy.
k values depend on leaf inclination and
incident solar radiation represented by
zenith or azimuth angles. Due to lack of in-
situ  measurements, k is assumed as a
constant (0.85) (Chianucci, 2020).

LAle=- (log/0((GF))/k

area,

GF corresponds to Gap Fraction, or the
fraction of gap pixels (labelled 1 in the
binary image).

Tree DBH (cm) was calculated from the
collected data on circumference. Tree
Density (TD) was calculated by dividing the
number of trees counted by the plot area.
Data analysis

Mean and Standard Deviation (SD) values
were calculated for LAI, DBH and TD, in
each of the three forest types. Variations in
LAI were observed through violin plots,
which combine boxplots with density
distributions. The spatial variation of LAI
values was then observed with a bubble
plot, which depicts the spatial coordinates
of the site, and the intensity of the value
through the size of the bubble. The
relationship  between forest structural
parameters (DBH, TD) and LAI were first
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observed  through  scatterplots  and
calculation of R-squared from the linear
trends. Finally, the significance of the effect
of DBH and TD on LAI and eventual
differences between forest types were
statistically  analysed  through linear
regression models.

Results

First observations

A total of 47 plots were successfully
surveyed, among the three study sites (PF n
= 17; SF n = 14; NFF n = 16). As shown in

table 1, mean LAI values are higher in PF,
and are similar between SF and NFF. Mean
DBH values are consistent between the
three forest types, however SD values are
larger for PF, indicating greater variability.
The same applies for TD values, this time
also NFF presents a larger SD, compared to
SF.

Study site Mean LAl  SD LAI MeaTDEH 2t Dt MeanTD  SDTD
(cm) {cm)

NFF 1.693 0.686 12 886 8264 0.231 0.084

PF 3.065 0.726 14.756 12 430 0.348 0.093

SF 1,555 0.609 10.375 5107 0.402 0.239

Table 1 Mean and standard deviation values for LAI, DBH and TD at
primary, secondary and native food forests.

Figure 4: Violin plot showcasing data distribution for LAI across the

three forest types.
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Data distribution

LAI distributions are bimodal. LAI values
range between 1 and 2 for SF. Distribution
for PF is left-skewed and ranges between
2.5 and 3.8. It is also left-skewed for NFF,
and ranges between 1.4 and 2.3. DBH data
are normally distributed. The peaks fall
around 10 cm for all three forest types. PF

- %

presents the largest range in values,
between 5 and 65 cm. SF presents the
smallest range on the other hand, between 5
and 23 cm. As for DBH, also TD data are
normally distributed. SF presents the
greatest variability, with TD
between 0.1 and 0.8.

ranging

Tree DBH (cm)

Figure 5: Violin plot showcasing DBH (cm) data distribution

across forest types.

SF

NFF ‘
0.0

0.2 04
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Figure 6: Violin plot showcasing tree density (n/m2) data

distribution across forest types.
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Figure 7 shows spatial variation of LAI
values across the three study sites. SF and
NFF present strong heterogeneity in LAI
values, while PF is consistent with values
around 3.

Figure 8 shows the frequency of large gaps
(intended as > 1.3% of the image;
Macfarlane et al.,, 2007). NFF and SF
present the largest frequency (NFF = 32; SF
=27).

Relationship between forest structural
attributes and LAl

A significant difference is observed

between forest types (p-value < 0.0001).
Figure 8 shows results from the correlation
between DBH (cm) and LAI. No significant
difference was found between DBH (cm)
and LAI (p-value = 0.137). Figure 9 shows
results from the correlation between TD
(n/m2) and LAI. A weak negative
correlation can be observed for PF (R2 >
0.09). A weak significant difference was
found between TD (n/m2) and LAI (p-value
=0.019).

Latitude
=
=

L N ¥
€9.118 69,118 69.114

Longitude

Study site

NFF

Figure 7: Spatial variation of LAI on site, depicted at the location of the
plots. The value of LAI is represented with dots, the size variation
corresponding to the value of LAI. The data points are subdivided by

Largo gap froquency

Figure 8: bar plot showing frequency of
large gaps in the canopy (considered as >
1.3% of the image size; Macfarlane et al.,
2022).
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LAI

LAI

Figure 10: Scatterplot presenting the relationship between tree density

and LAI The plot is divided by forest type.
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Discussion

LAI varies in space within and between
forest types

From initial observations of LAI values and
visual observations of its spatial variation, it
is possible to say that there is a clear
difference in LAI between forest types (p-
value < 0.0001). The three sites present
inherent structural differences, in terms of
age, species composition and diversity, and
stand structural heterogeneity. Also, as
expected, PF presented the highest values of
LAI (mean ca. 3), in accordance with other
studies on tropical forests (Tang et al.,
2012). This reflects the maturity of the
forest (20+ years old), its nutrient-rich
environment and the high level of primary
production that occurs. Contrary to
expectations, mean LAI values were similar
for NFF and SF, around 1. According to
similar studies, any LAI =< 1 allows some
light energy to fall onto the soil (Lam et al.,
2022). This reflects the  structural
characteristics of NFF and SF, which in fact
present large canopy gaps (fig. 8).
However, this result is in disagreement with
other studies, which have found a greater
similarity between SF and PF (Aragdo et
al., 2005; Miranda et al., 2020), rather than
with agroforestry systems (Liu and Pattey,
2010; Macfarlane et al., 2007). This could
be due to the fact that agroforestry systems
are generally more structured and managed
than SF. However, this does not apply for
this specific research site, and the similarity
could be explained by the fact that both SF
and NFF projects started around the same
time and are still in development (ASA
Biannual Report, 2017-2018).

Relationship between LAI and forest
structural parameters

The scatterplots (fig. 9 and 10) highlighted
a lack of relationship between forest
structural parameters and LAI, with a weak
exception for TD in the PF. In fact, the
negative trend visible in fig. 10 for PF is

tenuous, as only 9% of LAI variability is
explained by the model (R2 = 0.09).
Differently from other studies, which found
strong coupling of stem traits — including
DBH and TD — with LAI across forested
environments (Clark et al., 2021; Ordway et
al., 2022), this study didn’t find statistical
significance  between either structural
parameter and LAI. The null hypothesis is
therefore accepted, inferring that these two
parameters do not influence variations in
LAIL This is likely due to presence of
confounding factors, as high plant
biodiversity (Xie et al., 2023), topographic
(Pfeifer et al., 2016; Valladares et al., 1997)
and edaphic heterogeneity (Villegas, 2019)
are known to influence LAI variability in
Amazonian ecosystems. Other studies have
also included tree height in their
measurements (Paramanik et al., 2022).
This could improve the accuracy of results
significantly, especially considering the
high vertical heterogeneity of PF forests.
Study limitations and observations for

future studies

A variety of limitations should be pointed
out to support the results obtained. Time
was a big constraint for data collection.
Because of this, only 47 plots were
successfully collected, out of the 90 which
had been planned originally. A greater
sample size will likely allow better accuracy
in depicting the spatial variation of LAI
across the three sites. This will be especially
significant for PF, also to detect presence of
large light gaps, which were not considered
in this study. Large gaps play a prominent
role in determining the composition and
structure of forest communities, and
consequently LAI values (Liu and Pattey,
2010; Montgomery and Chazdon, 2002).
Future studies should also consider long-
term temporal variation of LAI values and
its  relationship to forest structural
parameters (Wirth et al., 2001), as there will
likely be interesting differences between the
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dry and the wet season. It also needs to be
pointed out that Brazil nut trees were not
measured during this study, both due to
instrument limitations for DBH
measurements and the random plot
allocation design. The canopy would have
also been very hard to capture digitally,
considering their height, and would have
provided inaccurate = LAI  estimates.
However, they are present at high density,
and their inclusion would certainly have an
impact on the results. Using remote sensing,
and LiDAR technology in particular, would
certainly improve the accuracy of these
estimates.

The Digital Cover Photography (DCP)
method presents inherent assumptions and
inaccuracies. Scattering effects might have
influenced the calculation of LAI values
(Alivernini et al., 2018), especially as the
sun was moving closer to zenith during the
time of each survey. The main disadvantage
of DCP is that it would require knowledge
of leaf angle distribution to improve
accuracy of LAI estimates (Wirth et al.,
2001). Estimates of LAI were calculated
with a light extinction coefficient (k) at a
constant (0.85). Such extinction coefficient
implies a spherical distribution of foliage,
which rarely occurs in real forest canopies
(Wirth et al., 2001). It is recommended to
collect estimates of k at the site of interest
(Srinet et al., 2019), however this was not
feasible for this study as it would have
impacted the nature conservation objectives
of the research station. A study also
suggests to take multiple photographs per
plot to improve spatial representation
(Pfeifer et al., 2016), and the number should
be chosen based on the structural
heterogeneity of the forest under study.
Further studies should focus on increasing
the number of photographs especially for
PF, considering the vertical heterogeneity
and canopy layering of the forest.

Conclusion

This study constitutes the first attempt to
estimate LAI values and assess whether
their variation was influenced by forest
structural parameters. The results were not
matching expectations, and this was likely
due to experimental design limitations.
However, it is fundamental to continue
studying this parameter, especially in the
long-term, being considered an essential
climate change variable. Establishment of
appropriate relationships between leaf area
and other predictor variables, such as DBH,
TD, and tree height, are essential in plant
physiology research. The ability to map and
characterise variation in LAI across forest
types is critical for understanding how their
primary productivity will respond to an
increasing  degree of  anthropogenic
disturbance. Accurate estimates of LAI will
also be fundamental for modelling
processes concerning energy balance, gas
exchange and light distribution at different
spatiotemporal scales.
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